Al Networking workshop

Shrijeet Mukherjee
Nikolay Aleksandrov

Costin Raiciu




Why the hullabaloo over ML and networking

o HPC networking has existed for

decades _
o Relatively a small targeted market with
strict Iatenc%/ and overhead
requirements
Rail Rail Rail Rail
Switch Switch Switch Switch

o Data Center (and Hyperscalar)

networking had a ditferent focus
o Resiliency _ .
o Aggregate bandwidth over wide
compute area
PCle PCle o Each flow/compute task was small and
Switch EEEE  Suitch fitin a node

e ML changed that to

o Sin?le fault domain compute with
scale-out and scale-up needs

GPU-native Fabric




So what is being communicated

A~
KA

X Xa Wn Hi H: Hs Wo

O O

https://www.linkedin.com/pulse/explaining-multilayer-perceptrons-terms-general-matrix-ajit-jaokar-c5aje/



Matrix math : why we need to communicate

CALCULATING ONE MATRIX ELEMENT

Merrill Sherman/Quanta Magazine



Matrix math with subdivisions : aka how we shard

CALCULATING THE ENTIRE MATRIX

Eight multiplications

Merrill Sherman/Quanta Magazine



Matrix math with subdivisions

CALCULATING THE ENTIRE MATRIX Mat(a,b) X Mat(x,y) = Mat(a,y)
A B

e Parallelize operations by replicating one
matrix in all local memories and shard the
other matrix across multiple compute
elements

e The goal is to have all compute elements
have the full matrix multiply result

e Implemented using

o  Scatter-Reduce (above method)
o  And then All-Gather (broadcast)

Eight multiplications

Merrill Sherman/Quanta Magazine



Logical network topologies for ML

Ring Topology : 4 links Mesh Topology : 6 links
N links for N nodes N*(N-1)/2 for N nodes



Rings in practice

[ Rail switch 0 ] Rail switch 1
. - — ] ’ - \
’ *
- \
- ‘\
Z ‘
L \
l“
/ 7
Node 1 Node 3 Node 4

N

i,




All-mighty reduce operations

a0, a1, a2, a3

do, d1, d2, d3 b0, b1, b2, b3
Node 4
c0, c1, c2, c3

Example has 4 nodes

e Each node has a
partial sum

e Goalis to get each
node the full set of all
sums i.e the actual
final matrix

This example shows the
usage of a ring topology for
optimal BW utilization



All-mighty reduce operations

of it’s local copies to
one neighbor

a0, a1, a2,
d3 (a3+d3) Phase 1
g:> ﬁ :@ao o Every node sends one

do, d1, (c2+d2), (a0+b0), e The index of the array
d3 b1, b2, b3 sent is based on node
Node 4 location

c0, (b1+c1),
c2 c2,c3

|




All-mighty reduce operations

partial sums computed
in the last phase to it’s

a0, a1,
c2+d2 (a2+c2+d2) Phase 2
g:> ﬁ :@agﬁﬂ e Each node sends the

, (b1+c1+d1), b1, b2, next neighbor
d3 (a3+b3+d% e Each node add’s the
Node 4 partial sum to it’s local
value at the
(@0+b0+c0), appropriate index
b1+c1 c2, c3 20+00




All-mighty reduce operations

b1+c1+d1

(—

a0+b0+c0+d0
Node 4

a0+b0+c0

al+b1+c1+d1

a2+b2+c2+d2

{

a3+b3+c3+d3

a3+b3+d3

Phase 3

A2+ +dD e Each node has the full
sum for one of the 4
indices

e Allthatis missing is a
broadcast/multicast to
exchange all values
with everyone else



The Basic’s of LLM’s

Transformer Block 1~ (>

Embedding @, Multi-head Self Attention MLP
Residual Residual

s§§§§§

Head 4 of 12(<>)

https://poloclub.github.io/transformer-explainer/



Matmult where art thou

Transformer Block1 |~ [>]

Embedding @, Multi-head Self Attention
Residual
Data
visualization
em
powers.
Key
users
to
Query Out
Value

Head 4 of 12(< >

https://poloclub.github.io/transformer-explainer/

sssss

Probabilities ®,




Mapping to “standard” DC scale-out networks

" ome0 |

[ Spine 1

)

Classic Scale out networks

Build for client server
model

Resiliency achieved by
Software redundancy
High Aggregate BW but
not always per node pair

What is needed

Very high inter node
bandwidth 800g and
above

Very high link utilization
using packet spray

An application interface
that allows direct HW
access for the fastpath



Now “Rail optimized”

" ome0 | =3n

Packet and Message level
] spraying is needed to avoid
building rail optimized designs




Introducing Ultra Ethernet Consortium (UEC)

AMDA

—

Hewlett Packard
Enterprise

D AlibabaCloud

t CORNELIS

NETWORKS

IT"ll MARVELL
P eferred
etworks

ZTED3

ultraethernet.org

Steering Members

ARISTA ||||||I||

© BROADCOM'

intel. 00 Meta

BT Microsoft

General Members

/A\ARRCUS (UER =15

I!! ByteDance
VMNET
BT g enfabrica Google Cloud
Juniper KEYSIGHT W Lawrence Livermore
NETWORKS TECHNOLOGIES

w4 National Laboratory

YMIPS H3C NO<KIA

O puresToraGE  Qualcomm

Ospirent

=VIDEN

an atos business

ORACLE

cadence

W

HUAWEI

<ANVIDIA.

SYNoPsys'

ALPHA networks

A neTswirT
PY inris

{:CREDO

o
FUJITSU

%@ Los Alamos

..................

Ahcron
i Qumulo
() sandia Nationa Laboratories

Tencent
i

Contributor Members

& srwveson /A Asteralabs ) auradine
centec cicha Clgﬁx ‘5’ CoMIRA"
dsprsen DRIVZNETS LLGLEE ] Q

FURIOSES  rarrcore  BBgarove &
infusion” (@) KALRAY SO ZN\N
Mhvemere  MICAS A3\ Microckip
st NETWORKS
molex napa:itech; (v)neuEaTy NUMASCALE
Rivos falid 9 SAMSUNG SDS

SambaNovar

SHPEDn 22 SCALA COMPUTING ﬁTECH @m

g R

TOYOTA ufiSpace

note that not all members are displayed on this page.



Introducing Ultra Ethernet Consortium (UEC

ultraethernet.org

Physical Layer

In the world of Ethernet, the Physical Layer is the foundation upon
which everything else rests. Our Physical Layer Working Group is
dedicated to enhancing the performance, reducing latency, and
improving the management of Ethernet’s physical infrastructure. This
includes the development of specifications for the Ethernet physical
layer, electrical and optical signaling characteristics, application
program interfaces, and data structures. Our goal is to make the
foundation stronger, ensuring that Ethernet can meet the rigorous
demands of Al, and HPC.

Transport Layer

The Transport Layer is crucial for end-to-end data delivery. Our
Transport Layer Working Group focuses on developing specifications
for an AI/HPC transport that delivers enhanced throughput, reduced
latency, greater scalability, and improved management in Ethernet
networks. We're ensuring that Ethernet can handle the high-
performance demands of Al, and HPC applications without missing a
beat.

Storage Working Group

The Storage Working Group adds storage services to Ultra Ethernet
(UEC) based Al and HPC workloads, collaborating with other UEC
workgroups for seamless integration. Our focus spans compatibility
with industry-standard physical connections, link-level capabilities
negotiation, and packet encoding mechanisms as well as addresses
emerging storage services. We integrate transport services, enhance
security, and ensure RDMA API compatibility through collaboration
with the software workgroup. Finally, we address the challenging task
of integrating industry-established practices of storage management
with the UEC, bolstering the foundation for high-performance storage
traffic.

Management Working Group

The Management Working Group enhances UEC fabric manageability
by collaborating with other workgroups to integrate evolving
management specifications. We define management elements, RPCs,
and models for switch and UEC compliant Transport Fabric End Point
(FEP) management. Our efforts include topology discovery, capability
discovery, monitoring, and interoperability queries to ensure seamless
interaction among UEC fabric components.

Link Layer

The Link Layer is where data packets are organized for efficient
communication. Our Link Layer Working Group is all about enhancing
the performance, reducing latency, and improving the management of
Ethernet’s link layer. We develop specifications that optimize
Ethernet’s efficiency, security, and scalability. We're extending and
replacing existing link and transport protocols to ensure data flows
smoothly and securely in Al, and HPC environments.

Software Layer

In the age of software-defined everything, our Software Layer Working
Group takes center stage. We're developing specifications, software
APIs, and open-source code to support a wide range of AlI/HPC use
cases and applications. This includes optimizing remote memory
access, enabling In Network Computations (INC), and addressing
security, management, and storage concerns. We're making Ethernet
more flexible, programmable, and adaptable for Al, and HPC
environments.

Compliance Working Group

The Compliance Working Group is focused on UEC specifications for
Al and HPC workloads and is all about making sure services and
devices meet the UEC defined technology. We define specs and
create tests to assess UEC implementations, ensuring rigorous
compliance with ratified UEC standards. We also define
interoperability goals among UEC compliant network devices (e.g.,
integrated NICs, PCle NICs and switches) according to UEC defined Al
and HPC profiles.

Performance and Debug Working Group

The Performance and Debug Working Group defines performance
benchmarks and debug capabilities and tools for Al and HPC
workloads. We align with evolving UEC specifications and define
performance metrics, benchmarks, and debug features. Our aim is to
create performance metrics that communicate to customers UEC’s
capabilities, performance and unique merits for their application. It
will also assist developers, DevOps and network operation teams by
enhancing visibility and debuggability in UEC-compliant
implementations. We provide test cases and software tools for
validation, creating a robust environment for Al and HPC applications




UE Transport : basic building blocks

User
Space

Kernel

‘ Applications ‘

¥
\ HPC & Al Middleware (MPI, SHMEM, *CCL) \

————————————— - ——————————— libfabric APIs

— — — - ProviderAPIs

Completion = Data Transfer
Vendor APIs

Vendor Low-Level NIC HW Library

Kernel
Bypass

Semantics
Map ULP APIs to packets,
Transaction tracking, ordering, completions, etc.

Packet Delivery

Congestion Management
Transmit rate control,
Adaptive path selection
Telemetry module

Reliability
Reliable delivery,
Packet ordering, SACK

Security

Encryption, Key Management

packets

Ethernet
Fabric




UE Transport : basic building blocks

User
Space

Kernel

[ Applications

)

] HPC & Al Middleware (MPI, SHMEM, *CCL) \

_______ libfabric APIs

\ libfabric Core

___________ SR —

ProviderAPlIs

Vendor UET Provider

Control - Communication = Completion

Implements libfabric features required by UET

————————— -i— — — Vendor APIs

Data Transfer

Vendor Low-Level NIC HW Library

Kernel Driver

Kernel
Bypass

Semantics
Map ULP APIs to packets,
Tran: ion tracking, orderin: mpletion: 3
Packet Delivery ]
Congestion Management Reliability

Transmit rate control,
Adaptive path selection
Telemetry module

Reliable delivery,
Packet ordering, SACI

Security

Encryption, Key Management

packets

Ethernet
Fabric

Reliable Ordered Delivery (ROD):
ROD delivers all packets associated
with the same message in order and
preserves inter-message ordering.

Reliable Unordered Delivery (RUD):
RUD'’s innovative Al-optimized
approach enables multi-path packet
spraying by handling out-of-order
delivery at the receiver without
requiring a re-order buffer, resulting in
high network utilization and minimal
tail latencies.




Ultra Ethernet Linux kernel modules

o Ultra Ethernet core (ultraeth.ko)
o UET context management

Job management

UET genetlink interface

Generic UET device management

IB verbs character device

O O O O

o Ultra Ethernet software device model (uecon.ko)
o Dependent on UE core (obviously)
o Implements UET sublayers in software
o Implements UET congestion management
o UDP tunnel network device



Uecon : software Ultra Ethernet model

e uecon is a single UET driver implementing the UET specifications for communication, it will be separate
from UET core (context mgmt, jobs mgmt, generic resource mgmt) which will end up in

drivers/ultraeth/core/ o
o  think of it as a single software UET device driver that can be loaded and created on-demand

e Implement Packet DellverY Sublayer (PDS) specification

Responsible for dynamically creating Packet Delivery Contexts
Keeps track of PDC ids which are unique per-PDC
Responsible for packet delivery over IP/Ethernet network
Tx/Rx NACK packets for various events _ _ .
Finds gor creates dynamically) PDCs on Rx/Tx based on endpoint addresses and unique PDC ids
Packet types: RUD/ROD/RUDI/UUD Request, RUDI Response, ACK, NACK, Control message

(©]
(©]
(©]
(©]
(©]
(©]

e PDCs are dynamic connections between two Fabric Endpoints (FEPs)
Responsible for packet reliabilit orderlng, duplicate elimination and congestion management
Track Tx/Rx Packet Se&uence umber(I SN) sXaces
Support co_alescm? AC ISCACK and selective ACK (SACK)
Can establish mulfiple PDCs between the same two FEPs
Have a specific mode: _
m  Reliable, Ordered Delivery (ROEU
m  Reliable, Unordered Delivery ;R D) _
m  Reliable, Unordered Delivery for Idempotent Operations (RUDI)
m  Unreliable, Unordered Delivery (UUD)

00000



Ultra Ethernet (ultraeth) driver flow

Open context char dev
(/devlultraethX),
associate job by service
name and id, read/write,
create queue, list ctxs/jobs

app

netlink
context/job:
NEW, DEL,
LIST

C create UET context = ——

create network tunnel
device ueconX

Netdev UDP socket




Code blocks and organization

)

struct ib_umem *umem_get()

static const struct ;ile_nperations uecon_char_ops = {

.owner = THIS_MODULE,

.open = uet_char_open,
.release = uet_char_release,
.read = uet_char_read,
.write = uet_char_write,
.unlocked_ioctl = uet_char_ioctl,
.1lseek = no_llseek,

const struct net_device_ops uecon_netdev_ops = {

struct genl_split_ops uecon_nl_ops[] = { .ndo_open = uecon_ndev_open,
{

.cmd = UECON_CMD_CONTEXT_GET, udp_sock_create()

.cmd = UECON_CMD_CONTEXT_NEW, setup_udp_tunnel_sock()
.cmd = UECON_CMD_CONTEXT_DEL,

.cmd = UECON_CMD_JOB_GET, .ndo_start_xmit = uecon_ndev_xmit,

.cmd = UECON_CMD_JOB_NEW,

.cmd = UECON_CMD_JOB_DEL, udp_tunnel_xmit_skb()

recv = uecon_ndev_encap_recv()

/sys/kernel/debug/uecon/ultraeth%d/pdc uet_pds_rx()

/sys/kernel/debug/uecon/ultraeth®d/job_regi




UET code organization

e Current (RFC set) state: all code together in linux/drivers/ultraeth/
o PDS is part of UET context (will move to uecon)

o uecon created dynamically with contexts (will be created only on demand)
o custom character device created with contexts (use special UET IB verbs device)
o  New kconfig option: CONFIG_ULTRAETH
o  Netlink API for UET core resource management (e.g. context, job)
e Future:

o  UET core (contexts, jobs, generic UET resources): linux/drivers/ultraeth/core/

o  UET device drivers: linux/drivers/ultraeth/devices (TBD)

o uecon moves to its own directory with PDS and all sublayers that are expected to be executed in hw, separate
kconfig option (CONFIG_ULTRAETH_UECON)

o uecon congestion management and additional UET sublayers

UET core <-> UET device in-kernel API

o  UET core <-> user-space API

O



Outstanding actions

e Getinvolved

e Need to leverage (and not rewrite) the RDMA layers
o |B device, Fixed queue maps etc need slight tweaking
o Memory management is entirely reusable
o RFC patches being prepped that
e User and HW interfaces are mapped as libfabric
o Kernel subsystem testing without libfabric will require work
o In kernel implementation (e.g storage) is being examined



